Penalty Decomposition Methods for Rank Minimization

نویسندگان

  • Yong Zhang
  • Zhaosong Lu
چکیده

In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first establish that a class of special rank minimization problems has closed-form solutions. Using this result, we then propose penalty decomposition methods for general rank minimization problems in which each subproblem is solved by a block coordinate descend method. Under some suitable assumptions, we show that any accumulation point of the sequence generated by the penalty decomposition methods satisfies the first-order optimality conditions of a nonlinear reformulation of the problems. Finally, we test the performance of our methods by applying them to the matrix completion and nearest low-rank correlation matrix problems. The computational results demonstrate that our methods are generally comparable or superior to the existing methods in terms of solution quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalty Decomposition Methods for $L0$-Norm Minimization

In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing the special structur...

متن کامل

Robust Regularized Singular Value Decomposition with Application to Mortality Data

We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The RobRSVD is formulated as a penalized loss minimization problem where a robust loss function is used to measure the reconstruction error of a low-rank m...

متن کامل

A Nonoverlapping Domain Decomposition Preconditioner for a Symmetric Interior Penalty Method

In this talk we will discuss a nonoverlapping domain decomposition pre-conditioner for the symmetric interior penalty Galerkin method [1, 2, 3]. Thepreconditioner is based on balancing domain decomposition by constraints [4].Theoretical results on the condition number estimate of the preconditioned sys-tem will be presented along with numerical results. References[1] J. ...

متن کامل

A Penalty Method for Rank Minimization Problems in Symmetric Matrices∗

The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal...

متن کامل

Exact Penalty Decomposition Method for Zero-Norm Minimization Based on MPEC Formulation

We reformulate the zero-norm minimization problem as an equivalent mathematical program with equilibrium constraints and establish that its penalty problem, induced by adding the complementarity constraint to the objective, is exact. Then, by the special structure of the exact penalty problem, we propose a decomposition method that can seek a global optimal solution of the zero-norm minimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011